Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
Front Immunol ; 14: 1146841, 2023.
Article in English | MEDLINE | ID: covidwho-2314286

ABSTRACT

Background: Humoral and cellular immune responses are known to be crucial for patients to recover from COVID-19 and to protect them against SARS-CoV-2 reinfection once infected or vaccinated. Objectives: This study aimed to investigate humoral and T cell responses to SARS-CoV-2 vaccination in patients with autoimmune diseases after the second and third vaccine doses while on rituximab and their potential protective role against reinfection. Methods: Ten COVID-19-naïve patients were included. Three time points were used for monitoring cellular and humoral responses: pre-vaccine to exclude virus exposure (time point 1) and post-second and post-third vaccine (time points 2 and 3). Specific IgG antibodies were monitored by Luminex and T cells against SARS-CoV-2 spike-protein by ELISpot and CoVITEST. All episodes of symptomatic COVID-19 were recorded. Results: Nine patients with antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis and one with an undifferentiated autoimmune disease were included. Nine patients received mRNA vaccines. The last rituximab infusion was administered for a mean (SD) of 15 (10) weeks before the first vaccine and six patients were CD19-B cell-depleted. After a mean (SD) of 19 (10) and 16 (2) days from the second and third vaccine dose, IgG anti-SARS-CoV-2 antibodies were detected in six (60%) and eight (80%) patients, respectively. All patients developed specific T cell responses by ELISpot and CoVITEST in time points 2 and 3. Previous B cell depletion correlated with anti-SARS-CoV-2 IgG levels. Nine (90%) patients developed mild COVID-19 after a median of 7 months of the third dose. Conclusion: Rituximab in patients with autoimmune diseases reduces humoral responses but does not avoid the development of T cell responses to SARS-CoV-2 vaccination, which remain present after a booster dose. A steady cellular immunity appears to be protective against subsequent reinfections.


Subject(s)
Anti-Neutrophil Cytoplasmic Antibody-Associated Vasculitis , Autoimmune Diseases , COVID-19 , Humans , SARS-CoV-2 , COVID-19 Vaccines , Reinfection , Rituximab/therapeutic use , T-Lymphocytes , Vaccination , Autoimmune Diseases/drug therapy , Immunoglobulin G , Antibodies, Viral
2.
Front Immunol ; 14: 1084630, 2023.
Article in English | MEDLINE | ID: covidwho-2240883

ABSTRACT

Purpose: To describe SARS-CoV-2 infection outcome in unvaccinated children and young adults with inborn errors of immunity (IEI) and to compare their specific acute and long-term immune responses with a sex-, age-, and severity-matched healthy population (HC). Methods: Unvaccinated IEI patients up to 22 years old infected with SARS-CoV-2 were recruited along with a cohort of HC. SARS-CoV-2 serology and ELISpot were performed in the acute phase of infection (up to 6 weeks) and at 3, 6, 9, and 12 months. Results: Twenty-five IEI patients (median age 14.3 years, min.-max. range 4.5-22.8; 15/25 males; syndromic combined immunodeficiencies: 48.0%, antibody deficiencies: 16.0%) and 17 HC (median age 15.3 years, min.-max. range 5.4-20.0; 6/17 males, 35.3%) were included. Pneumonia occurred in 4/25 IEI patients. In the acute phase SARS-CoV-2 specific immunoglobulins were positive in all HC but in only half of IEI in whom it could be measured (n=17/25): IgG+ 58.8% (10/17) (p=0.009); IgM+ 41.2% (7/17)(p<0.001); IgA+ 52.9% (9/17)(p=0.003). Quantitative response (index) was also lower compared with HC: IgG IEI (3.1 ± 4.4) vs. HC (3.5 ± 1.5)(p=0.06); IgM IEI (1.9 ± 2.4) vs. HC (3.9 ± 2.4)(p=0.007); IgA IEI (3.3 ± 4.7) vs. HC (4.6 ± 2.5)(p=0.04). ELISpots positivity was qualitatively lower in IEI vs. HC (S-ELISpot IEI: 3/11, 27.3% vs. HC: 10/11, 90.9%; p=0.008; N-ELISpot IEI: 3/9, 33.3% vs. HC: 11/11, 100%; p=0.002) and also quantitatively lower (S-ELISpot IEI: mean index 3.2 ± 5.0 vs. HC 21.2 ± 17.0; p=0.001; N-ELISpot IEI: mean index 9.3 ± 16.6 vs. HC: 39.1 ± 23.7; p=0.004). As for long term response, SARS-CoV-2-IgM+ at 6 months was qualitatively lower in IEI(3/8, 37.5% vs. 9/10 HC: 90.0%; p=0.043), and quantitatively lower in all serologies IgG, M, and A (IEI n=9, 1.1 ± 0.9 vs. HC n=10, 2.1 ± 0.9, p=0.03; IEI n=9, 1.3 ± 1.5 vs. HC n=10, 2.9 ± 2.8, p=0.02; and IEI n=9, 0.6 ± 0.5 vs. HC n=10, 1.7 ± 0.8, p=0.002 -respectively) but there were no differences at remaining time points. Conclusions: Our IEI pediatric cohort had a higher COVID-19 pneumonia rate than the general age-range population, with lower humoral and cellular responses in the acute phase (even lower compared to the reported IEI serological response after SARS-CoV-2 vaccination), and weaker humoral responses at 6 months after infection compared with HC.


Subject(s)
COVID-19 , Primary Immunodeficiency Diseases , Male , Humans , Child , Young Adult , Adolescent , SARS-CoV-2 , COVID-19 Vaccines , Immunoglobulin M , Immunity , Immunoglobulin A , Immunoglobulin G
3.
Frontiers in immunology ; 14, 2023.
Article in English | EuropePMC | ID: covidwho-2230234

ABSTRACT

Purpose To describe SARS-CoV-2 infection outcome in unvaccinated children and young adults with inborn errors of immunity (IEI) and to compare their specific acute and long-term immune responses with a sex-, age-, and severity-matched healthy population (HC). Methods Unvaccinated IEI patients up to 22 years old infected with SARS-CoV-2 were recruited along with a cohort of HC. SARS-CoV-2 serology and ELISpot were performed in the acute phase of infection (up to 6 weeks) and at 3, 6, 9, and 12 months. Results Twenty-five IEI patients (median age 14.3 years, min.-max. range 4.5-22.8;15/25 males;syndromic combined immunodeficiencies: 48.0%, antibody deficiencies: 16.0%) and 17 HC (median age 15.3 years, min.-max. range 5.4-20.0;6/17 males, 35.3%) were included. Pneumonia occurred in 4/25 IEI patients. In the acute phase SARS-CoV-2 specific immunoglobulins were positive in all HC but in only half of IEI in whom it could be measured (n=17/25): IgG+ 58.8% (10/17) (p=0.009);IgM+ 41.2% (7/17)(p<0.001);IgA+ 52.9% (9/17)(p=0.003). Quantitative response (index) was also lower compared with HC: IgG IEI (3.1 ± 4.4) vs. HC (3.5 ± 1.5)(p=0.06);IgM IEI (1.9 ± 2.4) vs. HC (3.9 ± 2.4)(p=0.007);IgA IEI (3.3 ± 4.7) vs. HC (4.6 ± 2.5)(p=0.04). ELISpots positivity was qualitatively lower in IEI vs. HC (S-ELISpot IEI: 3/11, 27.3% vs. HC: 10/11, 90.9%;p=0.008;N-ELISpot IEI: 3/9, 33.3% vs. HC: 11/11, 100%;p=0.002) and also quantitatively lower (S-ELISpot IEI: mean index 3.2 ± 5.0 vs. HC 21.2 ± 17.0;p=0.001;N-ELISpot IEI: mean index 9.3 ± 16.6 vs. HC: 39.1 ± 23.7;p=0.004). As for long term response, SARS-CoV-2-IgM+ at 6 months was qualitatively lower in IEI(3/8, 37.5% vs. 9/10 HC: 90.0%;p=0.043), and quantitatively lower in all serologies IgG, M, and A (IEI n=9, 1.1 ± 0.9 vs. HC n=10, 2.1 ± 0.9, p=0.03;IEI n=9, 1.3 ± 1.5 vs. HC n=10, 2.9 ± 2.8, p=0.02;and IEI n=9, 0.6 ± 0.5 vs. HC n=10, 1.7 ± 0.8, p=0.002 –respectively) but there were no differences at remaining time points. Conclusions Our IEI pediatric cohort had a higher COVID-19 pneumonia rate than the general age-range population, with lower humoral and cellular responses in the acute phase (even lower compared to the reported IEI serological response after SARS-CoV-2 vaccination), and weaker humoral responses at 6 months after infection compared with HC. Graphical

5.
Transplant Direct ; 8(11): e1389, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-2070188

ABSTRACT

In kidney transplant recipients, there is discordance between the development of cellular and humoral response after vaccination against SARS-CoV-2. We sought to determine the interplay between the 2 arms of adaptive immunity in a 3-dose course of mRNA-1273 100 µg vaccine. Methods: Humoral (IgG/IgM) and cellular (N- and S-ELISpot) responses were studied in 117 kidney and 12 kidney-pancreas transplant recipients at the following time points: before the first dose, 14 d after the second dose' and before and after the third dose, with a median of 203 and 232 d after the start of the vaccination cycle, respectively. Results: After the second dose, 26.7% of naive cases experienced seroconversion. Before the third dose and in the absence of COVID-19, this percentage increased to 61.9%. After the third dose, seroconversion occurred in 80.0% of patients. Naive patients who had at any time point a detectable positivity for S-ELISpot were 75.2% of the population, whereas patients who maintained S-ELISpot positivity throughout the study were 34.3%. S-ELISpot positivity at 42 d was associated with final seroconversion (odds ratio' 3.14; 95% confidence interval' 1.10-8.96; P = 0.032). Final IgG titer was significantly higher in patients with constant S-ELISpot positivity (P < 0.001). Conclusions: A substantial proportion of kidney transplant recipients developed late seroconversion after 2 doses. Cellular immunity was associated with the development of a stronger humoral response.

6.
Frontiers in immunology ; 13, 2022.
Article in English | EuropePMC | ID: covidwho-1939965

ABSTRACT

Cellular and humoral immune responses are essential for COVID-19 recovery and protection against SARS-CoV-2 reinfection. To date, the evaluation of SARS-CoV-2 immune protection has mainly focused on antibody detection, generally disregarding the cellular response, or placing it in a secondary position. This phenomenon may be explained by the complex nature of the assays needed to analyze cellular immunity compared with the technically simple and automated detection of antibodies. Nevertheless, a large body of evidence supports the relevance of the T cell’s role in protection against SARS-CoV-2, especially in vulnerable individuals with a weakened immune system (such as the population over 65 and patients with immunodeficiencies). Here we propose to use CoVITEST (Covid19 anti-Viral Immunity based on T cells for Evaluation in a Simple Test), a fast, affordable and accessible in-house assay that, together with a diagnostic matrix, allows us to determine those patients who might be protected with SARS-CoV-2-reactive T cells. The method was established using healthy SARS-CoV-2-naïve donors pre- and post-vaccination (n=30), and further validated with convalescent COVID-19 donors (n=51) in a side-by-side comparison with the gold standard IFN-γ ELISpot. We demonstrated that our CoVITEST presented reliable and comparable results to those obtained with the ELISpot technique in a considerably shorter time (less than 8 hours). In conclusion, we present a simple but reliable assay to determine cellular immunity against SARS-CoV-2 that can be used routinely during this pandemic to monitor the immune status in vulnerable patients and thereby adjust their therapeutic approaches. This method might indeed help to optimize and improve decision-making protocols for re-vaccination against SARS-CoV-2, at least for some population subsets.

7.
ERJ Open Res ; 8(1)2022 Jan.
Article in English | MEDLINE | ID: covidwho-1765434

ABSTRACT

A specific T-cell response persists in the majority of COVID-19 patients 6 months after hospital discharge. This response is more prominent in those who required critical care during the acute COVID-19 episode but is reduced in patients with lung sequelae. https://bit.ly/3fBuVA4.

9.
Med Clin (Engl Ed) ; 158(7): 324-326, 2022 Apr 08.
Article in English | MEDLINE | ID: covidwho-1707040
10.
ERJ open research ; 2022.
Article in English | EuropePMC | ID: covidwho-1688440

ABSTRACT

Patients infected by SARS-CoV-2 may develop pneumonia (COVID19) and require hospital admission and, eventually, critical care [1]. This has been related with a weaker innate immune response with impaired production of type I interferons [2]. In this setting, an antigen specific T-cell response is needed for the elimination of SARS-CoV-2, as well as to develop long-lasting memory to respond to potential future SARS-CoV-2 infections [3, 4]. However, this response needs to be contained once the virus is eradicated to avoid further damaging the host.

12.
Am J Transplant ; 21(12): 3971-3979, 2021 12.
Article in English | MEDLINE | ID: covidwho-1320381

ABSTRACT

Recently published studies have found an impaired immune response after SARS-CoV-2 vaccination in solid organ recipients. However, most of these studies have not assessed immune cellular responses in liver and heart transplant recipients. We prospectively studied heart and liver transplant recipients eligible for SARS-CoV-2 vaccination. Patients with past history of SARS-CoV-2 infection or SARS-CoV-2 detectable antibodies (IgM or IgG) were excluded. We assessed IgM/IgG antibodies and ELISpot against the S protein 4 weeks after receiving the second dose of the mRNA-1273 (Moderna) vaccine. Side effects, troponin I, liver tests and anti-HLA donor-specific antibodies (DSA) were also assessed. A total of 58 liver and 46 heart recipients received two doses of mRNA-1273 vaccine. Median time from transplantation to vaccination was 5.4 years (IQR 0.3-27). Sixty-four percent of the patients developed SARS-CoV-2 IgM/IgG antibodies and 79% S-ELISpot positivity. Ninety percent of recipients developed either humoral or cellular response (87% in heart recipients and 93% in liver recipients). Factors associated with vaccine unresponsiveness were hypogammaglobulinemia and vaccination during the first year after transplantation. Local and systemic side effects were mild or moderate, and none presented DSA or graft dysfunction after vaccination. Ninety percent of our patients did develop humoral or cellular responses to mRNA-1273 vaccine. Factors associated with vaccine unresponsiveness were hypogammaglobulinemia and vaccination during the first year after transplantation, highlighting the need to further protect these patients.


Subject(s)
COVID-19 , Heart Transplantation , Antibodies, Viral , COVID-19 Vaccines , Humans , Immunity, Humoral , Liver , SARS-CoV-2 , Transplant Recipients
13.
Am J Transplant ; 21(8): 2727-2739, 2021 08.
Article in English | MEDLINE | ID: covidwho-1243589

ABSTRACT

According to preliminary data, seroconversion after mRNA SARS-CoV-2 vaccination might be unsatisfactory in Kidney Transplant Recipients (KTRs). However, it is unknown if seronegative patients develop at least a cellular response that could offer a certain grade of protection against SARS-CoV-2. To answer this question, we prospectively studied 148 recipients of either kidney (133) or kidney-pancreas (15) grafts with assessment of IgM/IgG spike (S) antibodies and ELISpot against the nucleocapside (N) and the S protein at baseline and 2 weeks after receiving the second dose of the mRNA-1273 (Moderna) vaccine. At baseline, 31 patients (20.9%) had either IgM/IgG or ELISpot positivity and were considered to be SARS-CoV-2-pre-immunized, while 117 (79.1%) patients had no signs of either cellular or humoral response and were considered SARS-CoV-2-naïve. After vaccination, naïve patients who developed either humoral or cellular response were finally 65.0%, of which 29.9% developed either IgG or IgM and 35.0% S-ELISpot positivity. Factors associated with vaccine unresponsiveness were diabetes and treatment with antithymocytes globulins during the last year. Side effects were consistent with that of the pivotal trial and no DSAs developed after vaccination. In conclusion, mRNA-1273 SARS-CoV-2 vaccine elicits either cellular or humoral response in almost two thirds of KTRs.


Subject(s)
COVID-19 , Kidney Transplantation , Antibodies, Viral , COVID-19 Vaccines , Humans , Kidney Transplantation/adverse effects , RNA, Messenger/genetics , SARS-CoV-2
14.
J Clin Invest ; 131(6)2021 03 15.
Article in English | MEDLINE | ID: covidwho-1133407

ABSTRACT

Multisystem inflammatory syndrome associated with the SARS-CoV-2 pandemic has recently been described in children (MIS-C), partially overlapping with Kawasaki disease (KD). We hypothesized that (a) MIS-C and prepandemic KD cytokine profiles may be unique and justify the clinical differences observed, and (b) SARS-CoV-2-specific immune complexes (ICs) may explain the immunopathology of MIS-C. Seventy-four children were included: 14 with MIS-C, 9 patients positive for SARS-CoV-2 by PCR without MIS-C (COVID), 14 with prepandemic KD, and 37 healthy controls (HCs). Thirty-four circulating cytokines were quantified in pretreatment serum or plasma samples and the presence of circulating SARS-CoV-2 ICs was evaluated in MIS-C patients. Compared with HCs, the MIS-C and KD groups showed most cytokines to be significantly elevated, with IFN-γ-induced response markers (including IFN-γ, IL-18, and IP-10) and inflammatory monocyte activation markers (including MCP-1, IL-1α, and IL-1RA) being the main triggers of inflammation. In linear discriminant analysis, MIS-C and KD profiles overlapped; however, a subgroup of MIS-C patients (MIS-Cplus) differentiated from the remaining MIS-C patients in IFN-γ, IL-18, GM-CSF, RANTES, IP-10, IL-1α, and SDF-1 and incipient signs of macrophage activation syndrome. Circulating SARS-CoV-2 ICs were not detected in MIS-C patients. Our findings suggest a major role for IFN-γ in the pathogenesis of MIS-C, which may be relevant for therapeutic management.


Subject(s)
COVID-19/etiology , Cytokines/blood , Mucocutaneous Lymph Node Syndrome/etiology , Systemic Inflammatory Response Syndrome/etiology , Adolescent , Antibodies, Viral/blood , Antigen-Antibody Complex/blood , Antigens, Viral/blood , COVID-19/immunology , COVID-19/virology , Case-Control Studies , Child , Child, Preschool , Cohort Studies , Cross-Sectional Studies , Female , Humans , Infant , Interferon-gamma/blood , Male , Models, Immunological , Mucocutaneous Lymph Node Syndrome/immunology , Pandemics , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Systemic Inflammatory Response Syndrome/immunology , Systemic Inflammatory Response Syndrome/virology
15.
J Clin Pathol ; 75(2): 104-111, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-975717

ABSTRACT

AIMS: Atypical lymphocytes circulating in blood have been reported in COVID-19 patients. This study aims to (1) analyse if patients with reactive lymphocytes (COVID-19 RL) show clinical or biological characteristics related to outcome; (2) develop an automatic system to recognise them in an objective way and (3) study their immunophenotype. METHODS: Clinical and laboratory findings in 36 COVID-19 patients were compared between those showing COVID-19 RL in blood (18) and those without (18). Blood samples were analysed in Advia2120i and stained with May Grünwald-Giemsa. Digital images were acquired in CellaVisionDM96. Convolutional neural networks (CNNs) were used to accurately recognise COVID-19 RL. Immunophenotypic study was performed throughflow cytometry. RESULTS: Neutrophils, D-dimer, procalcitonin, glomerular filtration rate and total protein values were higher in patients without COVID-19 RL (p<0.05) and four of these patients died. Haemoglobin and lymphocyte counts were higher (p<0.02) and no patients died in the group showing COVID-19 RL. COVID-19 RL showed a distinct deep blue cytoplasm with nucleus mostly in eccentric position. Through two sequential CNNs, they were automatically distinguished from normal lymphocytes and classical RL with sensitivity, specificity and overall accuracy values of 90.5%, 99.4% and 98.7%, respectively. Immunophenotypic analysis revealed COVID-19 RL are mostly activated effector memory CD4 and CD8 T cells. CONCLUSION: We found that COVID-19 RL are related to a better evolution and prognosis. They can be detected by morphology in the smear review, being the computerised approach proposed useful to enhance a more objective recognition. Their presence suggests an abundant production of virus-specific T cells, thus explaining the better outcome of patients showing these cells circulating in blood.


Subject(s)
CD4-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/metabolism , COVID-19/diagnosis , COVID-19/immunology , Memory T Cells/metabolism , Adult , Aged , Aged, 80 and over , Biomarkers/blood , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , COVID-19/blood , COVID-19/mortality , Case-Control Studies , Clinical Decision Rules , Disease Progression , Female , Flow Cytometry , Humans , Immunophenotyping , Male , Memory T Cells/immunology , Middle Aged , Neural Networks, Computer , Prognosis , Sensitivity and Specificity , Spain/epidemiology
16.
Front Immunol ; 11: 573179, 2020.
Article in English | MEDLINE | ID: covidwho-909162

ABSTRACT

The COVID-19 pandemic, caused by Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2), has generated a significant repercussion on the administration of adoptive cell therapies, including chimeric antigen receptor (CAR) T-cells. The closing of borders, the reduction of people transit and the confinement of the population has affected the supply chains of these life-saving medical products. The aim of this mini-review is to focus on how the COVID-19 pandemic has affected CAR T-cell therapy and taking into consideration the differences between the large-scale centralized productions for the pharmaceutical industry versus product manufacturing in the academic/hospital environment. We also review different aspects of CAR T-cell therapy and our managerial experience of patient selection, resource prioritization and some practical aspects to consider for safe administration. Although hospitals have been forced to change their usual workflows to cope with the saturation of health services by hospitalized patients, we recommend centers to continue offering this potentially curative treatment for patients with relapsed/refractory hematologic malignancies. Consequently, we propose appropriate selection criteria, early intervention to attenuate neurotoxicity or cytokine release syndrome with tocilizumab and prophylactic/preventive strategies to prevent infection. These considerations may apply to other emerging adoptive cell treatments and the corresponding manufacturing processes.


Subject(s)
COVID-19/epidemiology , COVID-19/prevention & control , Immunotherapy, Adoptive/methods , Point-of-Care Systems , SARS-CoV-2 , Antibodies, Monoclonal, Humanized/therapeutic use , Antigens, CD19/immunology , COVID-19/virology , Cytokine Release Syndrome/drug therapy , Health Services Accessibility , Health Workforce , Hematologic Neoplasms/therapy , Humans , Patient Selection , Triage
SELECTION OF CITATIONS
SEARCH DETAIL